(**Rakesh Joshi has over 120 journal articles (and 5 international patents) with over 90 articles as the lead/first author)
Important publications with Joshi as lead /corresponding/first author:
Science (2014); Nature Communications (2022); Materials Today (2021); Materials Today (2011); Advanced Materials (2020);
Advanced Materials (2023); Nano Letters (2022); ACS Nano (2021); Desalination (2022); Green Chemistry (2018); Chemical Science (2018); Chemical Science (2016); Small Structures 1;
Small Structures 2; Applied Materials Today (2015);
Carbon (12 papers: 2016, 2017, 2018, 2020, 2023, 2024); Materials Today Chemistry (2019, 2020); Journal of Membrane Science (2019, 2023); Applied Physics Letters ( 5 papers- 2006, 2008, 2009); Nanotechnology (6 papers); Advanced Materials Interfaces (4 papers-2018, 2019, 2020); Journal of Physical Chemistry (6 papers); Nanoscale (2016, 2018).
Full Publication List
(2024)
122) Tongxi Lin, Xinyue Wen, Xiaojun Ren, Vanesa Quintano, Daria Andreeva, Kostya Novoselov, Rakesh Joshi 2024 ' Recent advances in graphene-based membranes with nanochannels and nanopores' Small Structures, 2400320 https://doi.org/10.1002/sstr.202400320
121) Jiajun Fan, Tao Wan, Yilin He, Chao Liu, Tingting Mei, Yu-Chieh Kuo, Ziheng Feng, Peiyuan Guan, Chun-Ho Lin, Mengyao Li, Lin Fu, Mengdie Tao, Tongxi Lin, Zhaojun Han, Jianbo Tang, Yeqing Xu, Caiyun Wang, Jin Zhang, Rakesh Joshi*, Dewei Chu, Small Structures, https://doi.org/10.1002/sstr.202400208
120) Xinyue Wen, Vanesa Quintano, Zongli Xie, Xiaojun Ren, Gregory Stonehouse, Heriberto Bustamante, Xiaoheng Jin, Rakesh Joshi, 2024
'Flake size-dependent water transport through graphene oxide membranes and rejection of geosmin and MIB from drinking water' Carbon, Vol 229, Article 119543 https://doi.org/10.1016/j.carbon.2024.119543
119) Tobias Foller; Rakesh Joshi, 2024 'Let’s discuss: When can we call a thin film 2-dimensional?' Current Opinion in Solid State & Materials Science, Vol 32, Article 101186, https://doi.org/10.1016/j.cossms.2024.101186
118) Linghui Meng; Lu Zhou; Chao Liu; Haowei Jia; Yile Lu; Dali Ji; Tianyue Liang; Yu Yuan; Xinren Zhang; Yanzhe Zhu; Yue Jiang; Peiyuan Guan; Yingze Zhou; Qi Zhang; Tao Wan; Mengyao Li; Zhi Li; Rakesh Joshi; Zhaojun Ha; Dewei Chu, 2024 'Synergistic Barium Titanate/MXene Composite as a High-Performance Piezo-Photocatalyst for Efficient Dye Degradation' Journal of Colloid And Interface Science, https://doi.org/10.1016/j.jcis.2024.06.222
117) Amir Carton, Tobias Foller, Rakesh Joshi, 2024 'Catalyzing Epoxy Oxygen Migration on the Basal Surface of Graphene Oxide using Strong Hydrogen-Bond Donors' ChemComm (Chemical Communications) https://doi.org/10.1039/D4CC01911C
116) Xiaojun Ren, Xiao Sui, Llewellyn Owens, Dali Ji, Xinyue Wen, Yuta Nishina, Kamal Pant, Vanesa Quintano, Daria Andreeva, Kostya Novoselov, Amir Karton, Tobias Foller, Rakesh Joshi, https://www.researchsquare.com/article/rs-4010517/v1
115) Fei Wang, Xinyue Wen, Uttam Mittal, Rasoul Khayyam Nekouei, Tobias Foller, Yuan Shang, Abhirup Bhadra, Dewei Chu, Neeraj Sharma, Dipan Kundu, Rakesh Joshi 2024 'Structure-dependent lithium storage characteristics of Fe3O4/rGO aerogels' Carbon, Volume 222, 25 March 2024, 119003
https://doi.org/10.1016/j.carbon.2024.119003
114) T. Lin, X Ren, X Wen, A Karton, V Quintano, Rakesh Joshi 2024 'Membrane based In-situ reduction of graphene oxide for electrochemical supercapacitor application' Carbon Volume 224, 25 April 2024, 119053
https://doi.org/10.1016/j.carbon.2024.119053
113) Zhijian Cao; Vanesa Quintano; Rakesh Joshi, 2024 ''Covalent functionalization of graphene oxide" Carbon 218, 118659 https://doi.org/10.7209/carbon.020401; https://doi.org/10.1016/j.carbon.2023.118659
(2023)
112) Xiaoyu Liu; Dali ji; Xiaoheng Jin; Vanesa Quintano; Rakesh Joshi 2023 'Machine learning assisted chemical characterization to investigate the temperature-dependent supercapacitance using Co-rGO electrodes' Carbon
https://doi.org/10.1016/j.carbon.2023.118342
111) Zhijian Cao; Xinyue Wen; Vanesa Quintano; Rakesh Joshi 2023 'On the role of functionalization in graphene-moisture interaction' Current Opinion in Solid State & Materials Science, Article number101122.
https://doi.org/10.1016/j.cossms.2023.101122
110) Tobias Foller; Xinyue Wen; Yee Yee Khine; Dali ji; Tarakranjan Gupta; Matthew Muller; Cristina Scret; Rakesh Joshi 2023 'Removal of chlorine and monochloramine from tap water using graphene oxide membranes' Journal of Membrane Science
https://doi.org/10.1016/j.memsci.2023.122022
109) Dali Ji; Lee Yunah; Nishina Yuta; Kamiya Kazuhide; Daiyan Rahman; Wen Xinyue; Chu Dewei; Yoshimura Masamichi; Kumar Priyank; Andreeva Daria; Novoselov Kostya; Lee, Gwan-Hyoung; *Rakesh Joshi; *Tobias Foller 2023, ‘Angstrom-confined electrochemical synthesis of sub-unit cell non van der Waals 2D metal oxides’, Advanced Materials https://doi.org/10.1002/adma.202301506
108) Zhu Renbo; Zhu Yanzhe; Hu Long; Guan Peiyuan; Su Dawei; Zhang Shuo; Liu Chao; Feng Ziheng; Hu Guangyu; Chen Fandi; Wan Tao; Guan Xinwei; Wu Tom; Joshi Rakesh; Li Mengyao; Cazorla, Claudio; Lu Yuerui; Han Zhaojun; Xu Haolan; Chu Dewei 2023, ‘Lab free protein-based moisture electric generators with high electric output’ Energy & Environmental Science, https://doi.org/10.1039/D3EE00770G
107) Jialin Deng, Yan Kou, Hanqing Liu, Mingzhao Yang, Keyan Sun, *Rakesh Joshi, *Quan Shi, 2023 ‘Melamine Foam/CNT/Graphene Hybrid Aerogel-Based Phase Change Composites with High Latent Heat Capacity for Solar/Electrothermal Conversion’ ACS Applied Energy Materials, https://pubs.acs.org/doi/10.1021/acsaem.3c00796
(2022)
106) Wen X; Foller T; Jin X; Musso T; Kumar P; Rakesh Joshi 2022, 'Understanding water transport through graphene-based nanochannels via experimental control of slip length', Nature Communications,vol. 13, pp. 5690, http://dx.doi.org/10.1038/s41467-022-33456-w
105) De Silva KKH; Huang HH; Viswanath P; Joshi Rakesh; Yoshimura M, 2022, 'Nanoscale electrical characterization of graphene-based materials by atomic force microscopy', Journal of Materials Research, vol. 37, pp. 3319 - 3339, http://dx.doi.org/10.1557/s43578-022-00758-0
104) Khine YY; Wen X; Jin X; Foller T; Joshi Rakesh, 2022, 'Functional groups in graphene oxide', Physical Chemistry Chemical Physics, vol. 9, pp. 26337 - 26355, http://dx.doi.org/10.1039/d2cp04082d
103) Foller T; Wang H; Joshi Rakesh, 2022, 'Rise of 2D materials-based membranes for desalination', Desalination,vol. 536, pp. 115851 - 115851, http://dx.doi.org/10.1016/j.desal.2022.115851
102) Ren X; Ji D; Foller T; Khine YY; Wen X; Joshi R, 2022, 'Graphene Oxide Membranes for Effective Removal of Humic Acid', Journal of Materials Research, http://dx.doi.org/10.1557/s43578-022-00647-6
101) Foller T; Madauß L; Ji D; Ren X; De Silva KKH; Musso T; Yoshimura M; Lebius H; Benyagoub A; Kumar PV; Schleberger M; Joshi Rakesh, 2022, 'Mass Transport via In-Plane Nanopores in Graphene Oxide Membranes', Nano Letters, vol. 22, pp. 4941 - 4948, http://dx.doi.org/10.1021/acs.nanolett.2c01615
100) Khine YY; Ren X; Chu D; Nishina Y; Foller T; Joshi R, 2022, 'Surface Functionalities of Graphene Oxide with Varying Flake Size', Industrial and Engineering Chemistry Research, http://dx.doi.org/10.1021/acs.iecr.2c00748
99) Jeong JH; Kang S; Kim N; Joshi RK; Lee G-H, 2022, 'Recent trends in covalent functionalization of 2D materials', Physical Chemistry Chemical Physics, http://dx.doi.org/10.1039/d1cp04831g
98) Ma H; Jin X; Du Y-Z; Dong L-Y; Hu X; Li W-C; Wang D; Joshi Rakesh; Hao G-P; Lu A-H, 2022, 'Asymmetric heterojunction between size different 2D flakes intensify the ionic diode behaviour', Chemical Communications, http://dx.doi.org/10.1039/d2cc01488b
97) Zhu R; Zhu Y; Chen F; Patterson R; Zhou Y; Wan T; Hu L; Wu T; Joshi R; Li M; Cazorla C; Lu Y; Han Z; Chu D, 2022, 'Boosting moisture induced electricity generation from graphene oxide through engineering oxygen-based functional groups', Nano Energy, vol. 94, pp. 106942 - 106942, http://dx.doi.org/10.1016/j.nanoen.2022.106942
96) Qi H; Xu J; Sun P; Qi X; Xiao Y; Zhao W; Joshi R; Huang F, 2022, 'Tailoring Conductive 3D Porous Hard Carbon for Supercapacitors', Energy Technology, vol. 10, pp. 2101103 - 2101103, http://dx.doi.org/10.1002/ente.202101103
(2021)
95) Foller T; Daiyan R; Jin X; Leverett J; Kim H; Webster R; Yap JE; Wen X; Rawal A; DeSilva KKH; Yoshimura M; Bustamante H; Chang SLY; Kumar P; You Y; Lee GH; Amal R; Joshi Rakesh, 2021, 'Enhanced graphitic domains of unreduced graphene oxide and the interplay of hydration behaviour and catalytic activity', Materials Today, http://arxiv.org/abs/2007.00860v5
94) Bhattacharjee S; Joshi R; Chughtai A; Heslop D; Wilcox M; MacIntyre R, 2021, 'Graphene and nanoparticles coated antimicrobial and biocompatible cotton/silk fabrics for protective clothing', ACS Applied Bio Materials
93) Joshi R; Bakshi A; Bustamante H; Sui X, 2021, 'Structure Dependent Water Transport in Membranes Based on Two Dimensional Materials', Industrial and Engineering Chemistry Research
92) Guan P; Zhu R; Zhu Y; Chen F; Wan T; Xu Z; Joshi R; Han Z; Hu L; Wu T; Lu Y; Chu D, 2021, 'Performance degradation and mitigation strategies of silver nanowire networks: a review', Critical Reviews in Solid State and Materials Sciences, pp. 1 - 25, http://dx.doi.org/10.1080/10408436.2021.1941753
91) Jin X; Wen X; Lim S; Joshi R, 2021, 'Size-dependent ion adsorption in graphene oxide membranes', Nanomaterials
90) Joshi R; Foller T, 2021, 'Comment on Precisely Tunable Ion Sieving with an Al13–Ti3C2Tx Lamellar Membrane by Controlling Interlayer Spacing', ACS Nano, vol. 15, pp. 9201 - 9203, https://doi.org/10.1021/acsnano.0c10476
89) Yan Z; Joshi R; You Y; Poduval G; Stride JA, 2021, 'Seeded Growth of Ultrathin Carbon Films Directly onto Silicon Substrates', ACS Omega, vol. 6, pp. 8829 - 8836, http://dx.doi.org/10.1021/acsomega.0c05770
88) Li M; Cai B; Tian R; Yu X; Breese MBH; Chu X; Han Z; Li S; Joshi R; Vinu A; Wan T; Ao Z; Yi J; Chu D, 2021, 'Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions', Chemical Engineering Journal, vol. 409, pp. 128158, http://dx.doi.org/10.1016/j.cej.2020.128158
(2020)
87) Ji D; Wen X; Foller T; You Y; Wang F; Joshi R, 2020, 'Chemical vapour deposition of graphene for durable anticorrosive coating on copper', Nanomaterials, vol. 10, pp. 1 - 9, http://dx.doi.org/10.3390/nano10122511
86) Madauß L; Foller T; Plaß J; Kumar PV; Musso T; Dunkhorst K; Joshi R; Schleberger M, 2020, 'Selective Proton Transport for Hydrogen Production Using Graphene Oxide Membranes', The Journal of Physical Chemistry Letters, pp. 9415 - 9420, http://dx.doi.org/10.1021/acs.jpclett.0c02481
85) Bhattacharjee S; MacIntyre R; Wen X; Bahl P; Kumar U; Aguey-Zinsou K-F; Chughtai A; Joshi R, 2020, 'Reduced Graphene Oxide and Nanoparticles Incorporated Durable Electro-Conductive Silk Fabrics', Advanced Materials Interfaces
84) Wen X; Joshi R, 2020, '2D Materials based Metal Matrix Composites', Journal of Physics D: Applied Physics, http://dx.doi.org/10.1088/1361-6463/ab9b5d
83) Madauß L; Pollmann E; Foller T; Schumacher J; Hagemann U; Heckhoff T; Herder M; Skopinski L; Breuer L; Hierzenberger A; Wittmar A; Lebius H; Benyagoub A; Ulbricht M; Joshi R; Schleberger M, 2020, 'A swift technique to hydrophobize graphene and increase its mechanical stability and charge carrier density', npj 2D Materials and Applications, vol. 4, http://dx.doi.org/10.1038/s41699-020-0148-9
82) Jin X; Foller T; Wen X; Ghasemian MB; Wang F; Zhang M; Bustamante H; Sahajwalla V; Kumar P; Kim H; Lee G; Kalantar‐Zadeh K; Joshi R, 2020, 'Effective Separation of CO 2 Using Metal‐Incorporated rGO Membranes', Advanced Materials, pp. 1907580 - 1907580, http://dx.doi.org/10.1002/adma.201907580
81) Jakhar R; Yap JE; Joshi R, 2020, 'Microwave Reduction of Graphene Oxide', Carbon, http://dx.doi.org/10.1016/j.carbon.2020.08.034
80) Bhattacharjee S; Macintyre CR; Wen X; Bahl P; Kumar U; Chughtai AA; Joshi R, 2020, 'Nanoparticles incorporated graphene-based durable cotton fabrics', Carbon, http://dx.doi.org/10.1016/j.carbon.2020.05.029
79) De Silva KKH; Huang H-H; Joshi R; Yoshimura M, 2020, 'Restoration of the graphitic structure by defect repair during the thermal reduction of graphene oxide', Carbon, vol. 166, pp. 74 - 90, http://dx.doi.org/10.1016/j.carbon.2020.05.015
78) Lyu J; Mayyas M; Zhu H; Chu D; Joshi R, 2019, 'Electrochemical performance of hydrothermally synthesized rGO based electrodes', Materials Today Energy, vol. 13, pp. 277 - 284, http://dx.doi.org/10.1016/j.mtener.2019.06.006
(2019)
77) Bhattacharjee S; Joshi R; Chughtai AA; Macintyre CR, 2019, 'Graphene Modified Multifunctional Personal Protective Clothing', Advanced Materials Interfaces, pp. 1900622 - 1900622, http://dx.doi.org/10.1002/admi.201900622
76) Kumar U; Goonetilleke D; Gaikwad V; Pramudita JC; Joshi RK; Sharma N; Sahajwalla V, 2019, 'Activated Carbon from E-Waste Plastics as a Promising Anode for Sodium-Ion Batteries', ACS Sustainable Chemistry and Engineering, vol. 7, pp. 10310 - 10322, http://dx.doi.org/10.1021/acssuschemeng.9b00135
75) Wen X; Jin X; Wang F; You Y; Chu D; Zetterlund P; Joshi R, 2019, 'Cation-Induced Coagulation in Graphene Oxide Suspensions', Materials Today Chemistry
74) Kim JH; Jeong JH; Kim N; Joshi R; Lee GH, 2019, 'Mechanical properties of two-dimensional materials and their applications', Journal of Physics D: Applied Physics, vol. 52, pp. 083001 - 083001, http://dx.doi.org/10.1088/1361-6463/aaf465
73) Chu D; Du H; Du H; zhang X; Cao F; tao W; Joshi R, 2019, 'Silver nanowire nickel hydroxide nanosheet composite for a transparent electrode and all-solid-state supercapacitor', Nanoscale Advances, vol. 2019, pp. 140 - 146, http://dx.doi.org/10.1039/c8na00110c
72) Huang H-H; Joshi R; Desliva K; Badam R; Yoshimura M, 2019, 'Fabrication of Reduced Graphene Oxide Membranes for Water Desalination', Journal of Membrane Science, vol. 572, pp. 12 - 19, http://dx.doi.org/10.1016/j.memsci.2018.10.085
71) Salim O; Mahmoud KA; Pant KK; Joshi RK, 2019, 'Introduction to MXenes: synthesis and characteristics', Materials Today Chemistry, vol. 14, pp. 100191 - 100191, http://dx.doi.org/10.1016/j.mtchem.2019.08.010
(2018)
70) Joshi R; You Y; Wang F; Jin X, 2018, 'On the role of driving force for water transport through nanochannels within graphene oxide laminates', Nanoscale, vol. 10, pp. 21625 - 21628, http://dx.doi.org/10.1039/C8NR08419J
69) Huang H; Joshi RK; De Silva K; Yoshimura M, 2018, 'Fabrication of Reduced Graphene Oxide Membranes for Water Remediation', , pp. 3652 - 3652, http://dx.doi.org/10.11470/jsapmeeting.2018.2.0_3652
68) Lyu J; Wen X; Kumar U; You YI; Chen V; Joshi R, 2018, 'Separation and purification using GO and r-GO membranes', RSC Advances, vol. 8, pp. 23130 - 23151, http://dx.doi.org/10.1039/C8RA03156H
67) You Y; Cholake S; Yoshimura M; Lee GH; Sahajwalla V; Joshi R, 2018, 'A controlled carburization process to obtain graphene-Fe3C-Fe composites', Advanced Materials Interfaces, http://dx.doi.org/10.1002/admi.201800599
66) Kumar U; Gaikwad V; Mayyas M; Sahajwalla V; Joshi RK, 2018, 'Extraordinary supercapacitance in activated carbon produced via a sustainable approach', Journal of Power Sources, vol. 394, pp. 140 - 147, http://dx.doi.org/10.1016/j.jpowsour.2018.05.054
65) Lian B; De Luca S; You Y; Sahajwalla V; Smith SC; Leslie G; Joshi RK, 2018, 'Extraordinary water adsorption characteristics of graphene oxide', Chemical Science, vol. 9, pp. 5106 - 5111, http://dx.doi.org/10.1039/C8SC00545A
64) You Y; Jin XH; Wen XY; Sahajwalla V; Chen V; Bustamante H; Joshi RK, 2018, 'Application of graphene oxide membranes for removal of natural organic matter from water', Carbon, vol. 129, pp. 415 - 419, http://dx.doi.org/10.1016/j.carbon.2017.12.032
(2017)
63) You Y; Mayyas M; Xu SONG; Gaikwad V; Munroe P; Sahajwalla V; Joshi RK, 2017, 'Growth of NiO Nanorods, SiC Nanowires and Monolayer Graphene Via a CVD Method', Green Chemistry, vol. 19, pp. 5599 - 5607, http://dx.doi.org/10.1039/C7GC02523H
62) Lee JY; Lee JH; Kim MJ; Dash JK; Joshi RK; Soon A; Lee GH, 2017, 'Direct observation of grain boundaries in chemical vapor deposited graphene', Carbon, vol. 115, pp. 147 - 153, http://dx.doi.org/10.1016/j.carbon.2017.01.009
61) Desilva K; Huang H-H; Joshi RK; Yoshimura M, 2017, 'Chemical reduction of graphene oxide using green reductants', Carbon, vol. 119, pp. 190 - 199, http://dx.doi.org/10.1016/j.carbon.2017.04.025
60) You Y; Deng J; Tan X; Gorjizadeh N; Yoshimura M; Smith SC; Sahajwalla V; Joshi RK, 2017, 'On the mechanism of gas adsorption for pristine, defective and functionalized graphene.', Phys Chem Chem Phys, vol. 19, pp. 6051 - 6056, http://dx.doi.org/10.1039/c6cp07654h
59) Lian B; Deng J; leslie G; Bustamante H; Sahajwalla ; Nishina Y; Joshi RK, 2017, 'Surfactant modified graphene oxide laminates for filtration', Carbon, vol. 116, pp. 240 - 245, http://dx.doi.org/10.1016/j.carbon.2017.01.102
58) Kumar U; Maroufi S; Rajarao R; Mayyas M; Mansuri I; Joshi RK; Sahajwalla V, 2017, 'Cleaner Production of Iron by using Waste Macadamia Biomass as a Carbon Resource', Journal of Cleaner Production, vol. 158, pp. 218 - 224, http://dx.doi.org/10.1016/j.jclepro.2017.04.115
57) Deng J; You Y; Bustamante H; Sahajwalla V; Joshi RK, 2017, 'Mechanism of Water Transport in Graphene Oxide Laminates', Chemical Science, vol. 8, pp. 1701 - 1704, http://dx.doi.org/10.1039/C6SC03909J
(2016)
56) Nair A; Vineesh T; Thomas S; Sahajwalla V; Joshi RK; Alwarappan S; Kalarikkal N; Kala M, 2016, 'Boron doped graphene wrapped silver nanowires as an efficient electrocatalyst for molecular oxygen reduction', Scientific Reports, vol. 6, http://dx.doi.org/10.1038/srep37731
55) Suriani AB; Nurhafizah MD; Mohamed A; Masrom AK; Sahajwalla V; Joshi RK, 2016, 'Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant', MATERIALS & DESIGN, vol. 99, pp. 174 - 181, http://dx.doi.org/10.1016/j.matdes.2016.03.067
54) Joshi RK; Shukla S; Saxena S; Lee G-H; Sahajwalla V; Alwarappan S, 2016, 'Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS2 layers', AIP Advances, vol. 6, pp. 15315 - 15315, http://dx.doi.org/10.1063/1.4941062
53) You Y; Sahajwalla V; Yoshimura M; Joshi RK, 2016, 'Graphene and Graphene Oxide for Desalination', Nanoscale, vol. 8, pp. 117 - 119, http://dx.doi.org/10.1039/C5NR06154G
52) Deng J; You Y; Sahajwalla V; Joshi RK, 2016, 'Transforming waste into carbon-based nanomaterials', Carbon, vol. 96, pp. 105 - 115, http://dx.doi.org/10.1016/j.carbon.2015.09.033
51) Joshi RK; Alwarappan S; Yoshimura M; Sahajwalla V; Nishina Y, 2015, 'Graphene oxide: The new membrane material', Applied Materials Today, vol. 1, pp. 1 - 12, http://dx.doi.org/10.1016/j.apmt.2015.06.002
Before Joining UNSW
50) Joshi RK; Carbone P; Wang FC; Kravets VG; Su Y; Grigorieva IV; Wu HA; Geim AK; Nair RR, 2014, 'Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes', SCIENCE, vol. 343, pp. 752 - 754, http://dx.doi.org/10.1126/science.1245711
49) Mishra M; Joshi RK; Ojha S; Kanjilal D; Mohanty T, 2013, 'Role of Oxygen in the Work Function Modification at Various Stages of Chemically Synthesized Graphene', The Journal of Physical Chemistry C, vol. 117, pp. 19746 - 19750, http://dx.doi.org/10.1021/jp406712s
48) Mishra M; Alwarappan S; Joshi RK; Mohanty T, 2013, 'Chemically synthesized graphene for electrochemical biosensing', Journal of Nanoscience and Nanotechnology, vol. 13, pp. 4040 - 4044, http://dx.doi.org/10.1166/jnn.2013.7226
47) Raj CJ; Joshi RK; Varma KBR, 2011, 'Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/micro structures', Crystal Research and Technology, vol. 46, pp. 1181 - 1188, http://dx.doi.org/10.1002/crat.201100201
46) Kumar A; Jaiswal MK; Kanjilal D; Joshi RK; Mohanty T, 2011, 'Fermi level shifting of TiO2 nanostructures during dense electronic excitation', Applied Physics Letters, vol. 99, http://dx.doi.org/10.1063/1.3608140
45) Alvi F; Joshi RK; Huang Q; Kumar A, 2011, 'Coarse-grained kinetic scheme-based simulation framework for solution growth of ZnO nanowires', Journal of Nanoparticle Research, vol. 13, pp. 2451 - 2459, http://dx.doi.org/10.1007/s11051-010-0137-6
44) Joshi RK; Kumar A, 2011, 'Room temperature gas detection using silicon nanowires', Materials Today, vol. 14, pp. 52 - 52, http://dx.doi.org/10.1016/S1369-7021(11)70034-7
43) Alvi F; Ram MK; Gomez H; Joshi RK; Kumar A, 2010, 'Evaluating the chemio-physio properties of novel zinc oxide-polyaniline nanocomposite polymer films', Polymer Journal, vol. 42, pp. 935 - 940, http://dx.doi.org/10.1038/pj.2010.89
42) Hu Q; Joshi RK; Kumar A, 2010, 'Electrons diffusion study on the nitrogen-doped nanocrystalline diamond film grown by MPECVD method', Applied Surface Science, vol. 256, pp. 6233 - 6236, http://dx.doi.org/10.1016/j.apsusc.2010.03.147
41) Alwarappan S; Joshi RK; Ram MK; Kumar A, 2010, 'Electron transfer mechanism of cytochrome c at graphene electrode', Applied Physics Letters, vol. 96, pp. 263702 - 263705, http://dx.doi.org/10.1063/1.3458698
40) Joshi RK; West L; Kumar A; Joshi N; Alwarappan S; Kumar A, 2010, 'Production of semiconducting gold-DNA nanowires by application of DC bias', Nanotechnology, vol. 21, pp. 185604 - 185610, http://dx.doi.org/10.1088/0957-4484/21/18/185604
39) Joshi RK; Gomez H; Alvi F; Kumar A, 2010, 'Graphene films and ribbons for sensing of O 2, and 100 ppm of CO and NO 2 in practical conditions', Journal of Physical Chemistry C, vol. 114, pp. 6610 - 6613, http://dx.doi.org/10.1021/jp100343d
38) Joshi RK; Weber JE; Hu Q; Johnson B; Zimmer JW; Kumar A, 2010, 'Carbon monoxide sensing at room temperature via electron donation in boron doped diamond films', Sensors and Actuators, B: Chemical, vol. 145, pp. 527 - 532, http://dx.doi.org/10.1016/j.snb.2009.12.070
37) Joshi RK; Hu Q; Alvi F; Joshi N; Kumar A, 2009, 'Au decorated zinc oxide nanowires for CO sensing', Journal of Physical Chemistry C, vol. 113, pp. 16199 - 16202, http://dx.doi.org/10.1021/jp906458b
36) Joshi RK; Krishnan S; Yoshimura M; Kumar A, 2009, 'Pd nanoparticles and thin films for room temperature hydrogen sensor', Nanoscale Research Letters, vol. 4, pp. 1191 - 1196, http://dx.doi.org/10.1007/s11671-009-9379-6
35) Hu Q; Hirai M; Joshi RK; Kumar A, 2009, 'Structural and electrical characteristics of nitrogen-doped nanocrystalline diamond films prepared by CVD', Journal of Physics D: Applied Physics, vol. 42, pp. 025301 - 025305, http://dx.doi.org/10.1088/0022-3727/42/2/025301
34) Krishnan S; Joshi R; Sekhar PK; Bhansali S, 2009, 'Nanocrystalline palladium thin films for hydrogen sensor application', Sensor Letters, vol. 7, pp. 31 - 37, http://dx.doi.org/10.1166/sl.2009.1006
33) Kitenge D; Joshi RK; Hirai M; Kumar A, 2009, 'Nanostructured Silver Films for Surface Plasmon Resonance-Based Gas Sensors', IEEE Sensors Journal, vol. 9, pp. 1797 - 1801, http://dx.doi.org/10.1109/JSEN.2009.2031168
32) Joshi RK; Yoshimura M; Tanaka K; Ueda K; Kumar A; Ramgir N, 2008, 'Synthesis of vertically aligned Pd2Si nanowires in microwave plasma enhanced chemical vapor deposition system', Journal of Physical Chemistry C, vol. 112, pp. 13901 - 13904, http://dx.doi.org/10.1021/jp8050752
31) Sekhar PK; Ramgir NS; Joshi RK; Bhansali S, 2008, 'Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10', Nanotechnology, vol. 19, http://dx.doi.org/10.1088/0957-4484/19/24/245502
30) Joshi RK; Yoshimura M; Chiu CC; Tung FK; Ueda K; Tanaka K, 2008, 'Electrochemical growth of Pd for the synthesis of multiwall carbon nanotubes', Journal of Physical Chemistry C, vol. 112, pp. 1857 - 1864, http://dx.doi.org/10.1021/jp077512l
29) Joshi RK; Yoshimura M; Chin C-C; Tung F-K; Ueda K, 2008, 'Electrochemical growth of Pd for the synthesis of multiwall carbon nanotubes', JOURNAL OF PHYSICAL CHEMISTRY C, vol. 112, pp. 1857 - 1864, http://dx.doi.org/10.1021/jp077512l
28) Joshi RK; Yoshimura M; Matsuura Y; Ueda K; Tanaka K, 2007, 'Electrochemically grown Pd nanoparticles used for synthesis of carbon nanotube by microwave plasma enhanced chemical vapor deposition', Journal of Nanoscience and Nanotechnology, vol. 7, pp. 4272 - 4277, http://dx.doi.org/10.1166/jnn.2007.888
27) Singh VN; Mehta BR; Joshi RK; Kruis FE; Shivaprasad SM, 2007, 'Enhanced gas sensing properties of In2O3:Ag composite nanoparticle layers; electronic interaction, size and surface induced effects', Sensors and Actuators, B: Chemical, vol. 125, pp. 482 - 488, http://dx.doi.org/10.1016/j.snb.2007.02.044
26) Singh VN; Mehta BR; Joshi RK; Kruis FE; Shivaprasad SM, 2007, 'Enhanced gas sensing properties of In2O3 : Ag composite nanoparticle layers; electronic interaction, size and surface induced effects', SENSORS AND ACTUATORS B-CHEMICAL, vol. 125, pp. 482 - 488, http://dx.doi.org/10.1016/j.snb.2007.02.044
25) Singh VN; Rajmehta B; Joshi RK; Kruis FE, 2007, 'Effect of silver addition on the ethanol-sensing properties of indium oxide nanoparticle layers: Optical absorption study', Journal of Nanomaterials, vol. 2007, http://dx.doi.org/10.1155/2007/28031
24) Singh VN; Mehta BR; Joshi RK; Kruis FE, 2007, 'Size-dependent gas sensing properties of indium oxide nanoparticle layers', Journal of Nanoscience and Nanotechnology, vol. 7, pp. 1930 - 1934, http://dx.doi.org/10.1166/jnn.2007.743
23) Joshi RK; Kruis FE, 2007, 'Size-selected SnO1.8 : AAg mixed nanoparticle films for ethanol, CO, and CH4 detection', Journal of Nanomaterials, vol. 2007, http://dx.doi.org/10.1155/2007/67072
22) Joshi RK; Kruis FE; Dmitrieva O, 2006, 'Gas sensing behavior of SnO1.8:Ag films composed of size-selected nanoparticles', Journal of Nanoparticle Research, vol. 8, pp. 797 - 808, http://dx.doi.org/10.1007/s11051-005-9045-6
21) Joshi RK; Kruis FE, 2006, 'Influence of Ag particle size on ethanol sensing of SnO1.8: Ag nanoparticle films: A method to develop parts per billion level gas sensors', Applied Physics Letters, vol. 89, http://dx.doi.org/10.1063/1.2360245
20) Joshi RK; Kumar P; Sehgal HK; Kanjilal A, 2006, 'Study of solution grown variable bandGap Pb1-xMnxS semiconductor nanoparticle films', Journal of the Electrochemical Society, vol. 153, http://dx.doi.org/10.1149/1.2257384
19) Joshi RK, 2006, 'pH and temperature dependence of particle size in Pb1-xFexS nanoparticle films', Solid State Communications, vol. 139, pp. 201 - 204, http://dx.doi.org/10.1016/j.ssc.2006.06.012
18) Joshi RK, 2006, 'Significance of solubility product in the solution growth of Pb 1-x M x S (M=Fe, Co, Cd, and Mn) nanoparticle films', Applied Physics Letters, vol. 88, http://dx.doi.org/10.1063/1.2179111
17) Kruis FE; Joshi RK, 2006, 'Distinction between Size Effect and Specific Surface Area Effect of Mixed Nanoparticle Gas Sensors', Chemie Ingenieur Technik, vol. 78, pp. 1346 - 1347, http://dx.doi.org/10.1002/cite.200650338
16) Joshi RK; Durai L; Sehgal HK, 2005, 'Change of majority carrier type in PbS nanoparticle films', Physica E: Low-dimensional Systems and Nanostructures 25 (4), 374-377, vol. 25, pp. 374 - 377, http://dx.doi.org/10.1016/j.physe.2004.07.001
15) Kruis FE; Joshi RK, 2005, 'Nanoparticle design and handling — challenges for engineers and particle technologists', China Particuology, vol. 3, pp. 99 - 104, http://dx.doi.org/10.1016/s1672-2515(07)60175-4
14) Joshi RK; Subbaraju GV; Sharma R; Sehgal HK, 2004, 'Pb 1-x Fe x S nanoparticle films grown from acidic chemical bath', Applied Surface Science, vol. 239, pp. 1 - 4, http://dx.doi.org/10.1016/S0169-4332(04)00492-1
13) Joshi RK; Subbaraju GV; Sharma R; Sehgal HK, 2004, 'Pb1-xFexS nanoparticle films grown from acidic chemical bath', APPLIED SURFACE SCIENCE, vol. 239, pp. 1 - 4, http://dx.doi.org/10.1016/S0169-4332(04)00492-1
12) JOSHI R; SUBBARAJU G; SHARMA R; SEHGAL H, 2004, 'Pb1−xFexS nanoparticle films grown from acidic chemical bath', Applied Surface Science, vol. 239, pp. 1 - 4, http://dx.doi.org/10.1016/s0169-4332(04)00492-1
11) Joshi RK; Sehgal HK, 2004, 'Density of states near Fermi level in PbS nanoparticle films', Physica E: Low-Dimensional Systems and Nanostructures, http://dx.doi.org/10.1016/j.physe.2004.03.005
10) Joshi RK; Mathur N; Subbaraju GV; Sehgal HK, 2004, 'Solution grown Pb1−xCoxS semiconductor nanoparticle films', Physica E: Low-Dimensional Systems and Nanostructures, vol. 23, pp. 56 - 60, http://dx.doi.org/10.1016/j.physe.2003.12.129
9) Joshi RK; Sehgal HK, 2004, 'Density of states near Fermi level in PbS nanoparticle films', PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, vol. 23, pp. 168 - 170, http://dx.doi.org/10.1016/j.physe.2004.03.005
8) Joshi RK; Mohan S; Agarwal SK; Sehgal HK, 2004, 'Photovoltaic effect in nanocrystalline Pb1-xFe xS-single crystal silicon heterojunctions', Thin Solid Films, vol. 447-448, pp. 80 - 84, http://dx.doi.org/10.1016/j.tsf.2003.09.026
7) Joshi RK; Kanjilal A; Sehgal HK, 2004, 'Solution grown PbS nanoparticle films', Applied Surface Science, vol. 221, pp. 43 - 47, http://dx.doi.org/10.1016/S0169-4332(03)00955-3
6) Joshi RK; Sehgal HK, 2004, 'In situ assembled homojunctions in solution grown Pb1-xFexS nanoparticle films', Nanotechnology, vol. 15, pp. 127 - 129, http://dx.doi.org/10.1088/0957-4484/15/1/024
5) Banerjee V; Joshi RK; Sehgal HK, 2004, 'Influence of adsorption and diffusion rates on the growth of [formula presented] nanoparticle films', Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 70, pp. 6, http://dx.doi.org/10.1103/PhysRevE.70.036122
4) Joshi RK; Sehgal HK, 2004, 'The effect of DC biasing of Si substrates on the structure and grain size of Pb1-xFexS nanoparticle films', Nanotechnology, vol. 15, pp. 23 - 26, http://dx.doi.org/10.1088/0957-4484/15/1/004
3) Joshi RK; Kanjilal A; Sehgal HK, 2003, 'Size dependence of optical properties in solution-grown Pb1-xFexS nanoparticle films', Nanotechnology, vol. 14, pp. 809 - 812, http://dx.doi.org/10.1088/0957-4484/14/7/320
2) Joshi RK; Sehgal HK, 2003, 'Structure, conductivity and Hall effect study of solution grown Pb1-xFexS nanoparticle films', Nanotechnology, vol. 14, pp. 592 - 596, http://dx.doi.org/10.1088/0957-4484/14/6/305
1) Joshi RK; Sehgal HK, 2003, 'Bias-induced changes in carrier type of Pb(1-x)Fe(x)S nanocrystalline solution grown thin films', Journal of Crystal Growth, vol. 247, pp. 425 - 427, http://dx.doi.org/10.1016/S0022-0248(02)02016-X
Copyright © 2023 UNSW Team Graphene - All Rights Reserved.
Powered by GoDaddy
We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.